Fine-Grained Visual-Textual Representation Learning
نویسندگان
چکیده
منابع مشابه
Visual-textual Attention Driven Fine-grained Representation Learning
Fine-grained image classification is to recognize hundreds of subcategories belonging to the same basic-level category, which is a highly challenging task due to the quite subtle visual distinctions among similar subcategories. Most existing methods generally learn part detectors to discover discriminative regions for better classification accuracy. However, not all localized parts are benefici...
متن کاملThe Effect of Visual Representation, Textual Representation, and Glossing on Second Language Vocabulary Learning
In this study, the researcher chose three different vocabulary techniques (Visual Representation, Textual Enhancement, and Glossing) and compared them with traditional method of teaching vocabulary. 80 advanced EFL Learners were assigned as four intact groups (three experimental and one control group) through using a proficiency test and a vocabulary test as a pre-test. In the visual group, stu...
متن کاملFine-Grained Visual Classification of Aircraft
This paper introduces FGVC-Aircraft, a new dataset containing 10,000 images of aircraft spanning 100 aircraft models, organised in a three-level hierarchy. At the finer level, differences between models are often subtle but always visually measurable, making visual recognition challenging but possible. A benchmark is obtained by defining corresponding classification tasks and evaluation protoco...
متن کاملBilinear CNNs for Fine-grained Visual Recognition
We present a simple and effective architecture for fine-grained visual recognition called Bilinear Convolutional Neural Networks (B-CNNs). These networks represent an image as a pooled outer product of features derived from two CNNs and capture localized feature interactions in a translationally invariant manner. B-CNNs belong to the class of orderless texture representations but unlike prior w...
متن کاملCo-Segmentation for Fine Grained Visual Categorization
In this extended abstract we review our works [1, 2] on fine-grained visual classification (FGVC) and present the most recent results of our classification pipeline. In particular, we focus on the importance of the foreground segmentation, and show that accurate segmentation of training images is highly beneficial for the accuracy of classification at test time. We demonstrate the merit of rela...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Circuits and Systems for Video Technology
سال: 2020
ISSN: 1051-8215,1558-2205
DOI: 10.1109/tcsvt.2019.2892802